Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Özen Özgen,^a* Oya Bozdağ-Dündar,^b Rahmiye Ertan^b and Engin Kendi^a

^aDepartment of Physics Engineering, Hacettepe University, Beytepe 06800, Ankara, Turkey, and ^bDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Tandõgan, Ankara, Turkey

Correspondence e-mail: ozgen_ozen@yahoo.com

Key indicators

Single-crystal X-ray study T = 293 KMean σ (C–C) = 0.013 Å R factor = 0.076 wR factor = 0.221 Data-to-parameter ratio = 15.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

thiazol-5-ylmethylene]-3-(2,4-dichlorobenzyl)thiazolidine-2,4-dione

There are two molecules in the asymmetric unit of the title compound, $C_{21}H_{12}Cl_4N_2O_2S_3$, which differ in the orientation of the chlorobenzene ring.

Received 27 March 2007 Accepted 28 March 2007

organic papers

Comment

The title compound, (I), was synthesized to test its antihyperglycemic and AR (aldose reductase) inhibitory activity (Costantino *et al.*, 2000).

There are two molecules in the asymmetric unit of (I) (Fig. 1), denoted 1 (containing C1) and 2 (containing C1'): each contains a thiazolidine (ring A), thiazole (ring B), and two substituted [C1–C6 (ring C) and C16–C21 (ring D)] benzene rings.

Ring A is planar in molecule 2, but in molecule 1 atom S1 deviates by 0.058 (3) Å from the C9/C8/N1/C10 plane. Rings A and B are twisted slightly with respect to each other, making dihedral angles of 5.5 (3)° and 6.3 (2)° in 1 and 2, respectively. The C8-C9-C11-C12 torsion angles $[-177.8 (9)^{\circ}$ in 1 and $-179.6 (8)^{\circ}$ in 2] indicate that both molecules adopt a *cis* configuration.

© 2007 International Union of Crystallography All rights reserved

(arbitrary spheres for the H atoms).

organic papers

The bond lengths and angles in ring A are very similar to the values reported for 3-(4-chlorobenzyl)-5-(4-oxo-4H-chromen-3-yl-methylene)-1,3-thiazolidine-2,4-dione (Özgen *et al.*, 2005) and 3-methyl-5-(4-oxo-4H-chromen-3-yl-methylene)-1,3-thiazolidine-2,4-dione (Aslantaş *et al.*, 2006). In both molecules, the C14-S3 bond length [1.700 (9) and 1.728 (8) Å in 1 and 2, respectively] is shorter than the standard Csp^2 -S single bond (1.76 Å), whereas the C15-S3 bond lengths [1.813 (8) in 1 and 1.813 (9) Å in 2] are much longer than the reference value. The orientation of ring D attached to B is quite different in the two molecules, as reflected in the C14-S3-C15-C16 torsion angles of -153.9 (7)° in 1 and 96.8 (7)° in 2.

In the packing of (I), the molecules aggregate as layers parallel to (001), as shown in Fig. 2.

Experimental

A mixture of 4-chloro-2-(4-chlorobenzylsulfanyl)thiazole-5-carbaldehyde (0.5 mmol) and 3-(2,4-dichlorobenzyl)thiazolidine-2,4-dione (Lo & Shropshire, 1957) (0.5 mmol) was heated at 373 K in the presence of 0.5 ml glacial acetic acid and sodium acetate (0.5 mmol). The reaction mixture was extracted with CHCl₃ (3 × 25 ml) and the organic layer was washed with water, dried over anhydrous Na₂SO₄ and evaporated to dryness. The residue was purified by column chromatography using silica gel 60 (230–400 mesh ASTM) as the adsorbent and hexane–dicholoromethane (1:1 ν/ν) as the eluent. Yellow prisms of (I) were recrystallized from dimethylformamide/ isopropanol (1:9 ν/ν) (yield 0.432 g, 61.31%; m.p. 427–428 K). Analysis calculated for C₂₁H₁₂Cl₄N₂O₂S₃: C 44.85, H 2.15, N 4.98, S 17.11%; found C 44.41, H 2.39, N 5.03, S 17.07%.

Crystal data

$C_{21}H_{12}Cl_4N_2O_2S_3$	$\gamma = 104.237 \ (10)^{\circ}$
$M_r = 562.31$	$V = 2283.0 (4) \text{ Å}^3$
Triclinic, P1	Z = 4
a = 8.0420 (7) Å	Cu $K\alpha$ radiation
b = 14.359 (2) Å	$\mu = 7.49 \text{ mm}^{-1}$
c = 21.2641 (15) Å	T = 293 (2) K
$\alpha = 100.386 \ (8)^{\circ}$	$0.27 \times 0.24 \times 0.18 \text{ mm}$
$\beta = 99.594 \ (7)^{\circ}$	

Data collection

Enraf-Nonius CAD-4 diffractometer Absorption correction: ψ scan (North *et al.*, 1968) $T_{min} = 0.237, T_{max} = 0.346$ (expected range = 0.178–0.260) 9143 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.076$ 577 parameters $wR(F^2) = 0.221$ H-atom parameters constrainedS = 1.03 $\Delta \rho_{max} = 0.42$ e Å⁻³8769 reflections $\Delta \rho_{min} = -0.47$ e Å⁻³

8769 independent reflections

3 standard reflections

frequency: 120 min

intensity decay: -14%

 $R_{\rm int} = 0.111$

3186 reflections with $I > 2\sigma(I)$

H atoms were placed in idealized geometries (C-H = 0.93–0.97 Å) and refined as riding, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 2

The packing for (I), viewed down the a axis, with H atoms omitted for clarity.

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors thank the Research Organization of Ankara University, Turkey (No. 2005–0803048) for support of this work.

References

- Aslantaş, M., Ceylan-Ünlüsoy, M., Ertan, R., Kendi, E. & Büyükgüngör, O. (2006). Acta Cryst. E62, 01471–01473.
- Costantino, L., Rastelli, G., Gamberoni, M. C. & Barlocco, D. (2000). *Exp. Opin. Ther. Patents*, **10**, 1245–1262.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Lo, C.-P. & Shropshire, E. (1957). J. Org. Chem. 22, 999–1001.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Özgen, Ö., Ceylan-Ünlüsoy, M., Bozdağ-Dündar, O., Ertan, R. & Kendi, E. (2005). Acta Cryst. E**61**, 0870–0872.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.